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The problem of existence of periodic solutions of equations of motion of a
solid body with a fixed point similar to the Lagrange gyroscope is considered,
The body center of mass is displaced by a small quantity relative to the axis
of symmetry , and that quantity is taken as the small parameter, Cases of
existence of periodic solutions that correspond to uniform rotation about the
axis of symmetry in the Lagrange solution, which can be represented by ser-
ies in integral or fractional powers of the small parameter, are considered
separately,

1. In conventional notation the Euler — Poisson equations of motion of a solid
body about a fixed point in the Lagrange problem ( A = B and C are the prin-
cipal moments of inertia; Ty = Yo = 0 and z, are coordinates of the center of
mass; P, ¢, and r are the angular velocity components; Yy, Y2, and V3 are dir-
ectional cosines of the vertical in the coordinate system attached to the body; M is
the mass of body,and ¢ is time) have the particular solution

p=0,¢g=0,r=r9=0 =0 y=1 (L1

Let us consider the problem of existence of periodic solutions that in the case close
to the Lagrange solution correspond to solution (1,1)

A = B’ xo b V;;zn, yﬁ =0 {1.2)

where |4 is a small dimensionless parameter, We introduce the dimensionless quantities
p=Vuwunlp, q=Vpnl, r=rnt
I
n=Ver, nu=Vev, =, t=nt (n_. ]/Mgzg)

Taking into consideration conditions (1, 2) and omitting for simplicity of notation
the primes , we reduce the Buler — Poisson equations, with the fixed 2z -axis directed
vertically upwards, to the form

d

L=agrtr = —apr+vs—1 o= — (1.3)
dyg - dys

3 = TVa— q¥s, _d't_ pYs — v, 57 = R(qv1— pva)

a=(A—C) /A b=C/A

The first three integrals are of the form
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M’s; Bg® -+ br® 4 2upy + 295 = ppy® +uge® + 2uyy0 + bre? + (1.4)
Ys0

UPY1 + UgYs + brys = ppevio + RgoVae + broVso
et 4 pyl + vt =1

Solution of the first and last of Eqs, (1.4) for r and y, yields

Vs=1—pf, r=n—ph
=Y Fy +YgpF 2+ ... (1.5)
fo = gtFs — Fao) b gome| oy Fa— Faof* — (P2 = Fas)| + .
Fi=v 4+ 7% FR=p+¢+2yu— '+

Initial values of F; and F; are denoted by Fy, and Fj, ,respectively, and
the dots indicate terms of higher order of smallness with respect to u.

Eliminating in Eq. (1,3) y; and r, we obtain the following s system of four
equations:

d d

Tf = arog + Ya — pagfs, _d% =1—arep— 71 +plapfs—f) (1.6)
dy d

S =roha— g —pfa— gf), S = —rep+ p+ Rlvsfa — pfa)

By the substitution of variables

p=P+hkli+c, ¢g=0+hl: .7
Tn=0U+pA) T+ PP + ¢ vo=(1+ph)Is=pQ

we reduce system (1. 6) to the form
dP/dt = MQ + pGy, dQ/dt = —MP + pG,

where

(1.8)
d
I = hala 4+ Gs, G2 = — MLy + 4Gy
Ma=1a[@—=b)ro = Vg —4], B=1hbro +VFrd—4%)
1

B b o = —T0 e
= ;‘11__9“2, 1~ arg? + 1 ] 2 aro‘a_}_i

Gy = — (1 + Bh) agfy — h (¢fy — Vofe)y Go= — (1 + Ph) X
(f — apfa) + R (pfy — vif2)
Gy = Pagfy + 9fy — 1ofes Gi = B (fi — apfy) — ph + v/

The generating system (with p = 0 ) for Eqs. (1.8) has pure imaginary roots
when b%r,2 — 4 > 0 , as assumed throughout the following analysis.

2, Let A/ Ay = ny/ ng be a rational number; this can be achieved by, for
example , a suitable selection of 7o. The general solution for this generating system
is then periodic of period Ty == 25tn, [ Ay = 2nn, / hp.  Let us formulate the pro-
blem of determining the T’ (p)~periodic solutions of system (1,8) with fairly small

§ which for p = 0 would reduce to a solution of period T, of the generating system,
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We substitute variable T for ¢ , setting ¢ = (1 4+ po) T, where @ isa func-
tion of the small parameter p which is to be determined. The problem now reduces to
the determination of periodic solutions of period T’y of the new system of equations [1]

dP/dv = MQ + pH,, dQldt = —\P + pH, (2.1)
dl'y/dv = ALy 4+ pHg, dly/dv = —Q,1 4 pH,

Hy=(1+ pa)G, + arQ, H,= (1 4 pa)G, — ar,P

Hy = (1 + pa) Gg+ ah,l', Hy= (1 + pa) G, — ad,l,

We seek a solution of system (2, 1) of the form

P (1) = M cos Ayt + Mgsin Agw + =, (2.2)
Q() = — M,sinhyt + Mycoshyt + 2,
rl(T)=MchSA2T—I—23, Fz(T)=—M35inA,2T+24

(m= S cPmu, 1=1,2,3,4
N=]1

PO)y=My=M"+my, QO0)=M;=M>+ m,
F1(0)=M3=M3°+m3, F2(0)=0

The periodic solutions of system (1,8) which correspond to the Ty -periodic so-
lutions of system (2,1) are of period T = (1 4+ pa) T'y. We represent function
as o = oy -} My In accordance with Poincare’s method we vary the initial con-
ditions which in this case coincide with the arbitrary constants of solution of the genera-
ting system. We also vary o so as to have solution (2,2) of periodic form, and seek

my, Mgy, M3z, and m, in the form of functions of the small parameter } which
vanish for p = 0.

3. The coefficients C ™ (1) are determined by equations

dct™ (v) " dc{™ (v n n
A =@+ B (), T = A () By D)
ac™ (1) n n ac{ (v) » n

—— = MO (M HP (1), e = — 0 (v) + HY (x)

with initial conditions C;™ (0) =0; H,™ (1) are known functions when C (¥
(t) are determined for k<< n.
It is possible to establish for system (3. 1) the validity of the following relationships:

4

P = 3, 520 el .2

SO = § 3 gasl) A 0) o

0
CM (To) = SV (To) (1=1,2,3,4)

where @a;(T) are the elements of the generating system fundamental matrix, and
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9::(0) =1 and 94 (0) =0 (i j).
Substitution of the first approximations for P, Q, Ty, and Ty into(1.7) by
formulas (1, 5) yields

Fi® = ¢ + B* (M2 + M) + (4 + BhPME + 2cs X (5.3)
(M, coshyt + Mysinhyt) + 2¢, (1 + ph) Mgcos kgt -+ 2f X
(1 + ph)y X [MMgcos (Ay — Ay) T + MMgsin (A — Ag)vl
Fi® = ¢4 2¢y + M+ M+ RM@ 4+ 2 (e, + B) X
(Mycos Ayt + Mysin A1) + 2 [eh + (14 Bh)] M cos Ayt -
2h [MMgcos (hy — Ag) T + MyMgsin (A, — At} — F,©

For brevity of presentation we introduce the quantities L;

L= —(1 4 Bh)afa— h(f1— Bfo)
Ly = — (1 + Bh) arf, — hifih — (1 4 BA) f.l
Ly = — (1 4 B&) (fy — acsfs) + hlerfy — eafe)
Ly = Bahfy+ hfs — (1 + Bh) fo, Ls" = Pah + fi — Bfa
Ly= B (fi — acif2) — er1fi + cof 2
If in these formulas we eliminate terms that are independent of p and determined
by the generating solution , they assume the following form:
L{® = [k;; -+ ki (M® + M) + kisM @14 kg (M, cos v +
Mysin Av) + kMg cos Mgt + kM3 [Mycos (A — Ag) T+
M, sin (A — Ap) Tl
Here and in what follows K, denote functions of parameters @ and 7'y which

can be determined by formulas (3,4),(1,5), and (3,3). They are not adduced here

because of their unwieldiness.
Functions §, (t) are calculated by the second formula (3,2) as follows:

(3,4)

T
SO () = j [Mo(L® + aky) — sin MuL®+ Mysin (A — Aul{¥)du  (3.5)
0

Sty = — f [My (L 4+ ahy) — cos ALy +
M cos (;qo_ M) uL V] du

S (1) = E{Lg‘” [— My sin (A — Ag) ut -+ My cos (M — Ag)u] —
sin Kguzi‘”} du

S (M) =~ f{Mz (Ls™ + ahs) 4 [My cos (hy — ha)u +
M, sin (xlo_ Ag) u] L — cos AuL{M} du
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4. It isshown in [11] that if solution (2,2) is to be T, -periodic it is necessary
andsufficient that
Vi=P(T)—P(0)=0, ¥,=0Q(Ty)—0Q(0)=0 (4.1)
V=T, (Tp) —T,(0) =0, ¥,=T3(Ty) — I'y(0) =0
where ¥, (i = 1, 2, 3, 4) are functions of M,;, M,, Mg, a, andp. The eq-
ualities (4, 1), which determine M;(®, oo, and m;(j =1, 2, 3; i = 1, 2, 3, 4),
are not independent owing to the existence in system (2, 1) of the first integral which
corresponds to the second formula in (1,4) [2]. It can be shown that the third condition
is a corollary of the remaining if Mg =0, aswellaswhen M;= M,=
Mg=0for ar,2 4- 1 > 0. By analogy with the statement in [31] it is possible to
consider one of the quantities M,°, My, Mg’, or & as an arbitrary constant, and
one of the m; (i = 1, 2,3, 4) as an arbitrary function of i which vanishes for p= 0.
Reducing equalities (4, 1) by i and equating to zero the terms at zero powers of
b, we obtain the following necessary conditions of periodicity

C(To)=CO(My, My, Mg, @) =0 (1=1,2,3)

which in accordance with the last of formulas (3, 2) are of the form

MZE’1+ R1=0, M1E1+R2=0, M3E3+R4=O (4.2)
where
Ey=1Fky— 1y kog+ kyp (M2 + MP) + (ks + 1z Kye') M§* +
ah,
Ea = ks1 - 112 k4a + (ksz + 1/2 ku) (M12 + Mzg) + kasMsz‘{‘
ak,

The expressions for Ry, R2, and R4 are nonzero only when Ay /A2 is equal
2,1,, or —1, and are of the form

R, =0, Ry=1 kyy'Mg?, Ry=1/s (ks — kes) MM,

(A’l /AQ = 2)

Ry =11y (ks — ky) MoMy, Ry = —1y (ky — kyd) MiM s

Ry= 11y ksy (M® — M) (Mg lhy=11)

Ry = =Y, k'MyMy, Ryp= My lky' + k' (M + MJP) +
ki M1 4ty kg’ M3My — Yy ksMs, Ry= — ok M,

Ay [ hy = —1)

Let M,°, My, My, and @, satisfy Eqs, (4.2), Let us consider Jacobi's
matrices of Cq (L), C2(Ty), and C,(T,) in terms of M,, My My, and o
calculated for M; = M;°(j =1, 2, 3), a = &y, and alsoof ¥;, ¥y, and ¥,
intermsof m; with m;= p =0 (i = 1, 2, 3, 4). The calculation of the
second matrix does not involve differentiation with respect to @, hence it is possible
toset p =0, andsince M;(j= 1,2,3),a,and m;(i =1, 2, 3, 4) appear
in solutions in the form of related sums, the considered matrices are the same, We de-
note them by J .

The solution of Egs. (4.1) comprises the following three cases of existence of
periodic solutions,



Periodic solutions of equations of motion of a solid 267

1 M =M?=ML=0,E,+0, and Eg=0. Thematrix J is
then of the third rank, and there exist univalent functions My, My, Mg of & and
that satisfy Eqs, (4,1). When p is fairly small these functions can be represented in
the form of converging series in integral powers of U which vanish when p=20;

o is an arbitrary constant,except @ = — Ay (ky — o k) or ay= —
Mgt (kg — /5 kys). Since @, and m, appear in the solution in the form of sum

o = Qg - My, itis possible to set the arbitrary quantity M; equal zero without
affecting the sought solutions. In the considered case solution (2,2) is periodic with
arbitrary parameter @ and is analytic with respect to p in some neighborhood of its
zero value,

2°- If Mlo = Mzo = .Es = 0, El# 0, and Mskas#o’ matrix J is of
the third rank, My is an arbitrary quantity,and ag = Ayt (1, kyy— kg — kgaM 52).
Equations (4, 1) have solutions in the form of series in integral powers of p for m,,m.,,
and m, that depend on the arbitrary My , and vanishwhen p = 0 ( mg istobetaken
as equal zeroJ.

3% If My#0 andtheratio Ay /Ay isequal 2,1/,, or —1 ,matrix

J is of the third rank , unless specified otherwise, M is an arbitrary constant, and
mg, Mg, and M, can be determined in the form of series of the required form in
integral powers of H.

1f the rank of J is specified to be lower than the third, cases of branching are
possible [41, and there exist solutions which can be represented for reasonably small
by converging series in fractional powers of M.

Let
MiIre=2, MP=M"=0, M %0, E;=0 (4.3)
Ey=1y(kog — kyfY M %40, Ey — 1y (kys — Kyy)) Mg =

then the necessary conditions of periodicity (4,2) are satisfied and J is of the second
rank; M,°, My, My, and a are determined by conditions (4.3) and m,, m,,

mg, and m, remain to be determined, Applying the theorem on implicit functions
to the first and fourth of Eqs, (4, 1), we obtain for m, and m, a unique solution of
the form

my = Z 5iim1‘l"j1 my = 2 “Umlil’j
i1 itjiz1

We set mg = Op, where & isan arbitrary constant, Substituting the expres-
sions for m,, mg, and m, into the second of Eqs, (4, 1) we obtain equations  of
branching of the form

[’912 —2 (kaa + ';—kae + -2%‘;5)] my® + ggRﬁmfﬂj =0

which has one small real solution for /By which can be presented in the form of series
in powers of W®'* and depends on the arbitrary parameter §.
If we now set mg = 8,m,, the equation of branching assumes the form

[2 (kls + -—%-* km') My® — bkgsMs° — —;- (Fgs — ku')] 8my® +
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[klz + (kIS + —;" km') 8:? + 0207\'1] my® + i i Rjmy'w’ =0

i=0 j=1
1 1 k
Co0 = — 7~ (ksz + 5 k3g + K336,® + 211;:°)
If the coefficient at M;* is nonzero, then for sign Ry Ry = —1, i.e. for

sign C,® (My°, My, Mg, ag)-C® (MP°, My, Mg, ag) = —1

there are two small real solutions for m, which can be represented in the form of po-
wer series in W7 [4]. These solutions contain the arbitrary parameter §;. If we set
my = &;m, + 8,m,> andselect §; so that the coefficient at m,® in the equa-
tion of branching vanishes, there is one real solution which can be represented in the
form of power series in ' is determinate in some neighborhood of zero, and depends
on the arbitrary parameter 0,
We represent mg  in the form of the sum

ms = %kalk

By selecting §; so that the coefficients in the equation of branching successively
vanish it is possible to obtain within the range of initial conditions of Eqs, (2.1) a se-
quence of branching points of periodic solutions which can be represented in the form of
series in fractional powers of . 1f such sequence converges, we obtain the concen -
tration point of periodic solution branching. By imposing other constraints it is possible
to obtain other cases of branching,

5. If the ratio A, /A, isneither 2, '/, or —1, the solution of the prob-
lem of existence of periodic solutions requires the consideration of higher approximations
than in the two cases considered above, For this we use formulas (3, 2) which yield

C (To) and C{P (To)
To

CP (To) = My (Ey — M) To + § [ML® — sin oL +
0

Mysin (A — ho) TLY + LOSP (v) + LY (v) + MaSP (7)) dv
Ta

CP(To) = — Myo(Ey — M) Ty — | [MLLP — cos ML +
0
M cos (hy — o) TLyY 4 LEOSE (1) + haSP (v) + LOSP (7)) dr
Instead of the second periodicity condition of (4, 1) we consider the equality
. 1 1
w2x=mwl+mqu=o (5.1)

Terms with zero powers of | donot appear in (5, 1) and the coefficients at first powers
of W are of the form

L A2 L ~@ - ! n ,
3 C2 (To) + 57 O (To) = To{( 3 — 5 ) oy’ +
ks’ M Mg

ko' (My® + M%) - ks’ M3%| — —m,
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k ’Ms o5 k IM
T b+ Fs) (M2 + M) — 00 oy —+ g (M2 + M?) +

k. kg’ M, ’
kgaMs® — 2 (M,? — M%) + m {ksy” +

ks (M1 + M3?) -+ ks’ My? (M1 + M3?)+ 5'2& (M — M?)] —
kM2 [ My M, BighosM® | kyg'kggM g2
2k (E - Tf?) T 20— T2 0»1—21»2)}
where s and 74 represent the lower bound values of integrals in the second and
third of equalities (3,5),
After reduction of equality (5,1) by p we obtain the following necessary conditions
for the existence of solutions of the sought form:

1 1
31, OO (T0) + 5, &7 (To) =0 (5.2)

Condition (5, 2) together with the first and third of conditions (4, 1) are also suffi -
cient conditions of periodicity ,since the rank of Jacobi 's matrix in zero of ¥,, ¥,¥,
and W is equal three with respect to m; (i = 1, 2, 3, 4) . One of the quanti-
ties M, My, Mg, or a can then be arbitrarily selected, and m; which corresponds
to remaining quantities can be represented in the form of series in integral powers of ®
which are convergent when  is fairly small, satisfy Eqs,(4, 1) and (5, 1), and vanish
when p = 0. Iftherankof J isrequired tobe lower than the third, cases of
branching are possible,

6. Let us now assume that the frequency ratio Ay /Ay isanirrational number.
The generating system for Eqs, (2, 1) hasthe particularsolution
P(t)=10,Q (1) =0,T,(x) = MzcosAyr, I'y (1) = — Mgsinhyt (6,1)

with frequency A .
The conditions of existence of periodic solutions of system (2, 1) which reduce for
p = 0 tosolution (6,1) are of the form

¥,=my(coshTy— 1)+ mysin AT+ uC;(T)+ ... =0
Yo=—mysinhT o+ my(cos AT o+ 1) + uCofM (Tg)4+... =0
W4=C4(1)(To)+o--=0

Solutions of the derived equations are of the same form asin case 2 °. Asimilarstate -
ment is also valid for the other periodic solution of the generating system with frequency A,.
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